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J. Phys. A: Math. Gen. 14 (1981) 1307-1311. Printed in Great Britain 

A stochastic model for the motion of two relativistic 
particles 
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Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980, Dubna, 
USSR 

Received 21 August 1980 

Abstract. Within the framework of the Kershaw stochastic model and of the hypothesis on 
the space stochasticity, equations of motion for two relativistic stochastic particles are 
obtained which coincide in form with the equations of Cufaro Petroni and Vigier. Jn the 
nonrelativistic limit, these equations of free motion reduce to the usual two-particle 
Schrodinger equation, the imaginary part of which corresponds to a Hamilton-Jacobi 
equation for two particles interacting through a nonlocal quantum potential. 

In our recent papers (Namsrai 1980a, b, c) the motion of a single particle and of two 
interacting nonrelativistic particles has been investigated in terms of space stochasticity 
and we have obtained stochastic mechanics due to Nelson (1966), Kershaw (1 964) and 
de la Pena and Cetto (1975). A method is proposed for the relativisation of the given 
scheme for describing the processes in the stochastic space; by using this method, the 
equations of a single-particle motion can be written in a covariant form which coincides 
with the equations of Lehr and Park (1977), Guerra and Ruggiero (1978) and Vigier 
(1979). 

Now we consider the problem of two identical correlated relativistic scalar particles 
since this is the problem of real physical interest. We want to analyse this question 
within the framework of Kershaw’s (1964) stochastic model and of the stochastic space 
R4(X?@) with a small stochastic component (Namsrai 1980a) by using the Smoluchowski 
type equations for the probability density p(xY,  rz”, sl, s2) of finding the first particle at 
point x: and the second one at x2y at ‘time’ s1 and SL, respectively. Let u ? ( x : ,  x i ,  $1, s2) 

and uz” (x?, x;, sl, s2) be their relative velocities. Here s is a certain invariant parameter 
(proper time), another interpretation of which can be found in Namsrai (1980a) and 
Miura (1979). We have assumed (Namsrai 1980a) that the derivative with respect to s 
could be interpreted as a derivative with respect to the direction of some (arbitrarily 
chosen) vector V @ .  Especially, if V@ is the particle velocity, then s may be interpreted 
as the proper time of this particle. 

A basic hypothesis for a generalisation of our scheme to the relativistic case was the 
following: 

(i) The stochasticity of the space &(a@) appears in the Euclidean region of the 
variables .fg = xg -t bg only, x g  being the regular part of the coordinate and bk some 
small random vector with a distribution A ( b g )  obeying the conditions 

j d A ( b g ) = l ,  dA ( b g )  3 0. 
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(ii) A shift of the coordinate x" 3 x" + i7 is equivalent to the consideration of the 
physical quantities as functions of complex times t + i 7  in the limit T + O ,  where 7 is a 
random variable. The importance of this shift in the time variable has been noted by 
Alebastrov and Efimov (1974) and Davidson (1978) (see also Namsrai 1980d). 

Our starting point is just the two-particle generalisation in the configuration space of 
our one-particle model (Namsrai 1980a, b, c). This model can be mathematically 
described in an eight-dimensional configuration space (see also Cufaro Petroni and 
Vigier (1979)) where a pair position and relative velocity are defined by the eight- 
component vectors X' and U' ( i  = 1, . . . , 8 )  respectively, where 

{x'l'=l, 8"{X?, X 2 Y l f i , V ~ O ,  ,3, {v'(X', $1, sz)}={v?,  vi} 

with xy, x2y four-vectors of the position of each body. The metric is defined by g,, as in 
Cufaro Petroni and Vigier (1979) so that 

x2 = XlX' = gJ'X' = (xzj2. 

I€ x ?  (sl), x2y (sz) are the trajectories for the two particles, the trajectory in the 
configuration space will be X'(s1, SZ). 

By analogy with the three- and four-dimensional cases, we introduce here a 
two-particle version *(XI, sl, sz, Asl, Asf) of the conditional probability densities 
P(x ,  t, At) and W(x", s, As) determined in Namsrai (1980a, b, c) and Lehr and Park 
(1977). If two particles do not correlate, the quantity of q(X', sl, sz, Asl, Asz) may be 
factorised by 

WX', si, SZ, Asi, Asz) = Wi(x?, 31, Asi)*z(XZY, S Z ,  h 2 ) .  

Here we will choose the gauge As1 = As2 = As. 
Then Smoluchowski-type equations for p(A", SI, s2) acquire the following form: 

p (XI, SI * AS, ~2 f AS) 

= J d8 yE p ( x '  F Y', X' + i y L  x5 + i ~ i  ; SI, sz) 

x W(X' i Y', X' +iYk, X5 + i Y i ,  SI, s2, AS, YL) 

where X' and Y' ( I  = 2, . . . , 4 , 6 ,  . . . ,8 )  denote the space coordinates of Xi and Y ' .  
By using the exact form of W*(X' i Y', X'+iY:, . . . , YE) 

W* = (~TD,As)-~ exp [-( YL - Y~)2/4D,As] 

YL -- (fivihs,  *iviAs, 5 v + A s )  I 

we obtain from (1) the following equations in the limit As 3 0 

ap/as1 +ap /aSz+a , (pv : ) -D+up  = 0 

a p / a s l + a p / a s z + a , ( p u i ) + D - r l p  = 0 ( 3 a )  
a, = a/axl, -ala' = 0 = 01 +oz. 

Here we assume D- = D, = D, D is the diffusion coefficient, the quantities v i  and v i  
are called the forward and backward velocity, respectively. We pass to the variables 

1 ' 1  v ' = z ( v i  + v i _ ) ,  U =z(u: -U:) 
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and sum (subtract) the equations in (3a)  in pairs, thus obtaining 

aplasl+aplaS2+ai(pUi)=o 

u i  = -D ai  In p 

where u‘(X’, sl, s 2 )  and ui(X’, sl, s2 )  are the total drift and stochastic velocities. 
In our model, as a generalisation of the assumption (Namsrai 1980a) that the mass 

(interpreted as the probability density times volume) cannot disappear through any 
hyperplanes characterised by the vectors U? and U;, respectively, we make the physical 
hypothesis that the total number of particles (i.e. pair in the real space-time) is 
conserved, and thus we write 

= O  (p:  = u ; / c 2 ,  i = I, 2 )  

so that our continuity equation in the configuration space is 

ai(pui) = o (4) 

or in terms of U ’  and ui, 

--uivi + D  aiui = 0. ( 5 )  

Due to Kershaw (1964) we can constitute the equations of the type (1) for the mean 
velocities vi, (X’, sl, s2)  in the external fields FI ( X i ,  sl, s2) by the following formula 

U I (Xi, SI + E AS, ~2 + E As) 

1 As 
M 

+ E - F i  (X’ - E Y I ,  X1 + i Y k, X 5  + i Y L, SI, SZ) 

x V ( X r - ~ Y ’ , X 1 + i Y k , X 5 + i Y ; ,  SI, s2, As, Yk) 

x p(X’ - E  Y’, XI + i Yk, Xs + i Y i ,  s1, s2) d8 YE (6) 

where 

N , =  d 8 Y E ~ * ( X ‘ - E Y r , X ’ + i Y ~ ,  . . . , Yk)p(X’-~y’ ,  . . . , S Z )  I 
are the normalisation constants and 

& = I  1 
for U, 

-1 forv‘. 

M is some effective mass (it can be of a matrix form with respect to m-mass of the 
scalar particle) of our two-body system. 

In our case the equations (6) imply 
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We sum equations (7) and have 

D,ui-Dsui =(1 /2M)(F!+  +F! . )=F ' /M 

a a .  D, = - - + - + u ' a i  
asl as2 

Equation (8) together with the continuity equation (4) are the covariant analogy of the 
one-particle case in the two-particle system. 

Let us notice that the left-hand side of equation (8) coincides exactly with the 
expression for acceleration obtained by Cufaro Petroni and Vigier (1979) on the basis 
of some assumption in the framework of the mathematical approach of Nelson (1967) 
and Guerra and Ruggiero (1978). 

By equations ( 5 )  and (8) we have a coupled pair of nonlinear partial differential 
equations which may be linearised if we assume as before (Nelson 1966, 1967 and 
Cufaro Petroni and Vigier 1979) 

U' = #p /m (9) 

p(x' ,  SI, 92) = imc2(s1 + s2) + s(x') .  
where q ( X ' ,  SI, 92)  is the phase function which is given by 

(101 

Starting from (4), (8) and using ( 3 b ) ,  (9), (10) we obtain in the case F'=O an 
Hamilton-Jacobi-type equation (R  = pl",  D = h / (2m) )  for our two-body system i.e. 

(ala' -a,Sa'S/h--2m2c2/h2)R = 0 (11) 

which yields for the continuity equation the form 

2d,Ra'S + Ra,a'S = 0.  

Finally, we have the equation for (I, = R exp(iS/A) 

( 0 - - 2 m 2 c 2 / h 2 ) ~  = 0.  (12) 

In the nonrelativistic limit, the relation (12) reduces to the usual two-particle 
Schrodinger equation which (writing $(xi, x2, t )  = R(x1, x2, t )  exp(iS/h)) splits into the 
real and imaginary parts i.e.: 

dP/at +V1(P  V1S/m)+V2(P V2SIm) = 0 

with F = R2 = $*(I, and 

dS/at -I ( t l S ) 2 / m  + (V2S)2/w1 + Q = 0 

where 

Q = -h2(V: RIR + V i R / R ) / 2 m  

is a nonlocal quantum potential. 

mentioned results have been found in Cufaro Petroni and Vigier (1979). 
In conclusion we notice that the discussion of the physical implications of the above 
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